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A weakly controllable system with two rotating phases is considered in a regime of resonance oscillations. The characteristic 
rate of change of the slow variables in the system is of the order of e, and the control is contained in the terms of the equations 
of order ~3:2. This order of magnitude of the control makes it possible to control a resonance regime over time intervals of the 
order of 1/e. The purpose of the control is to minimize a functional representing the deviation from a steady resonance regime. 
It is shown that there is a hierarchy of fast and slow motions in the equations of the maximum principle. An algorithm is described 
for the asymptotic integration of these equations using successive averaging. The problem of vibrational maintenance of the steady 
rotation of an unbalanced rotor is considered as an example. © 1999 Elsevier Science Ltd. All rights reserved. 

In previous investigations of controllable non-linear systems [1-3] it was assumed that the system is 
functioning outside the resonance region or passes through resonances without "capture". The problem 
of controlling the motion in the neighbourhood of a resonance in a quasi-linear system with slowly varying 
frequency has also been discussed [4]. To solve optimal control problems [1-4], the averaging method 
has been used, taking [2-3] the peculiarities of convergence in resonance systems into account [5]. 

In this paper, unlike the previous approach [1--4], it will be assumed that the purpose of the control 
is to keep the non-linear system in a small neighbourhood of the resonance ("resonance capture" [5]). 
Problems of this kind are of interest in the design of control systems operating on the resonance principle 
[6] or the synchronization principle [7, 8]. 

It was shown [5] that in the near-resonance region the averaging method is not directly applicable, 
and the method of successive averaging was introduced to solve the problem in [5]. Various forms of 
this method have been used [5, 9, 10] to analyse near-resonant systems. Here the successive averaging 
procedure will be extended for solving optimal control problems in the near-resonance region. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  B A S I C  E Q U A T I O N S  

To simplify the discussion, we will confine our attention to systems in which the slow variable and 
the controls are scalars [5]. Extension to the multi-dimensional case requires no special proofs. 

The equations of motion of a weakly controllable two-frequency system may be written in the form 

x" = ef(X, Ol,O2)+ e312 F(x, Ol,O2,u), x(O) = x ° 

O~ = tO! (x) + fk! (x, el ,  02 ) + E3/2KI (x, 0!, 02, u), 0! (0) = 0 ° (1.1) 

O~ = co 2 (x) + e/~ (x,.01,02) + e3/2K2 (x, 01,02, u), 02 (0) = O ° 

where x ~ B C R1, u ~ U, 01, 02 E T2: (0, 27t) x (0, 2~t), with U a compact subset in R1 and e > 0 a 
3/2 small parameter. The introduction of the parameter e in the resonance system will be discussed later. 

For any admissible control u, the right-hand sides of Eqs (1.1) are assumed to be 2rt-periodic in 0i and 
sufficiently smooth functions of their variables in the domain D = (B x T 2 x U}; as regards the 
frequencies, to1, 2(x) ~> c > 0 for x e B. It is assumed in addition that the coefficients of Eqs (1.1) contain 
a finite number of harmonics of the form Vm = rm01 + Sin02, where rm and Sm are integers. 

We will compare (1.1) with the non-controllable system, which does not contain terms of the order 
of e 3/2. We will assume that forx ~ B the non-controllable system exhibits an isolated primary resonance 
with the resonance surface 
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~x)  = rcol(x) + sorz(x) = 0 (1.2) 

where r and s are certain fixed integers, and a unique isolated solution J of Eq. (1.2) exists, that is 

~ )  = o, yx(~) = r # o 

We know [5] that the width of the "resonance capture" region B, is of the order of e 3/2. We will 
therefore assume that x ° = ~ + lxp e B, at the starting time, and we will consider the motion in a g- 
neighbourhood of surface (1.2). Following this approach, we introduce new variables q~ and u 
characterizing the phase and frequency difference 

r01 + sO2 = qu, y(x) = Ixu (1.3) 

It follows from (1.3), in particular, that 

x = x~t = x(gu) = ~ + g P q v  + g2... (1.4) 

By virtue of (1.3), we put 

01 = 0, 02(9, 0) = sq (9  - r0) (1.5) 

and then represent the coefficients {f, kl, k2} = l in the form 

l(x, 0t,  e2) = lo(x, tp) + li(x, tp, o) (1 .6)  

1 2~v 
/o(X,O)=(1) e = ~--~ !/(x,O,02(q~,O))d0, (l,)e =0 (1.7) 

The components of the vector ll do not contain resonance harmonics. It is assumed that the averages 
(1.7) exist uniformly with respect to x e B, ~0 e R1. 

By virtue of (1.4) and (1.5), we can rewrite (1.1) as 

u' = g% (x~)[/(x~, 0, 02 (qu, O)) + gF(x~, 0, 02 0P, 0), u)] 

tp" = ~tu + g~k(x~, O, 02 (tp, 0)) + g3K(x~, O, 02 (tp, 0"), u) 

O' = ~1 (xla) + bt2kl (xla, 0, 02 ((p, O)) + ~t 3 K 1 (xlt, 0, 02 (~, 0), u) (1.8) 

k = rki + sk 2, K = rKl + sK 2 

with initial data u(0) -- u °, q~(0) = q~0, 0(0) -- 0 °. 
Retaining on the right of (1.8) terms of the order of at most two in g, we obtain 

u ' = l~o(<P,0) + g2/~ (q~,0)u + g2Fo(CP,0,u) 
q¢= Isu +g2ko(q~,0), O'=co+}~p +p.2Q2(9,e) (1.9) 

where 

fo = rf(~,o,  o2(9,o)), Fo = FF(~,0,O2(~,0),u) 

f, = r , r - ' f ( ~ . o , e ~ ( ~ , o ) )  + f~(~,o,o~(~,  0)),I', = ~ = ( ~ )  (1.1o) 

/Co = k (~ ,O ,02 (~ ,O) ) ,  co = ~ t ( ~ ) ,  CI~ = r - ~  

It follows from (1.6) that 

/o (~o, e) = 130 (~) + b, (~, e), 80 (~) = (/o)°, (b,)0 = 0 (1.11) 

The function bl does not contain resonance harmonics. 
For our further analysis, it will be convenient to deal with the slow subsystem 

u" = p.~o(Cp), ¢p" = gu (1.12) 

We know [5, ii] that, when investigating typical near-resonance motions, (1.12) may be considered 
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as the equations of motion for an "equivalent pendulum" with potential 

V(9) = - f  ~oCs)ds (1.13) 
0 

which admits of stable and unstable equilibrium positions. One can distinguish in the phase plane of 
system (1.12) regions of oscillatory and rotational motion, separated by a separatrix. Then (1.9) may 
be considered as the equations of the controlled motion of the pendulum driven by fast periodic 
perturbations. 

For the further analysis of Eqs (1.9), we introduce new variables: the total energy of the pendulum 

e = v2/2 + V(9 ) 

and the rotating phase y, defined by the following relations [12] 

~yfO 9 = f~(e)/v(e, 9), f~(e) = 2n/T(e) 

v(e ,9 )=+[2(e-  V(9)] It2, T(e) =~ d9 
v (e, 9) 

(1.14) 

(1.15) 

The integration is performed around a contour e = const along a suitable phase trajectory of the 
unperturbed system. The domain 0 ~< e < es corresponds to oscillatory motion. Here es is the energy 
level corresponding to motion along the separatrix. With this change of variables, cp = tp(e, y) = 
9(e, y + 2n). 

The substitution (1.13)-(1.15) reduces (1.9) to the form 

e" = IxBl(e,9,0)+ix2t~l(e,9,0,u) 

y" = B.Q(e) + IXB2(e, 9,0) + IX202 (e,9,0,u) 

O' = o3 + ixQl (e, 9) + ix2Q2(9,0,u) 

(1.16) 

where 9 = <p(e,y), and the right-hand sides of (1.16) are 2n-periodic iny. HereB1 = blo, B2 = (~y/~)e)n l ,  
that is 

(B,) ° =(B2) ° = 0  (1.17) 

Consequently, the average rate of change of the function e is of the order o f  I1, 2, not ~t, and system 
(1.16) has a hierarchic structure with slow variable e, a "semi-fast" phasey rotating at a frequency laf2(e) 
and a "fast" phase 0 rotating at frequency co. With fixed periodic controls, the approximate solution of 
(1.16) may be found by successive averaging over 0 andy. We will extend this method to solve optimal 
control problems. 

Henceforth we will consider a problem of importance in practice, namely, maintaining a resonance 
regime in system (1.1). In this formulation, the control problem is to minimize the deviations from the 
stationary point J. Let er, be the function (1.14), defined on trajectories of the perturbed system (1.8). 
Considering (1.14) as a measure of deviation from the stationary point, we will write the functional of 
the problem as 

7" 
Ju (u) = M[e~ (T)] + Ix2 f m(e~, u)dt (1.18 ) 

o 

where m and M are fairly smooth functions. 
In accordance with the nature of the evolution of the variable e~, we consider the dynamics of the 

system over a time interval of the order of p-2, that is, the process will end at time T = ta-2c, where 
a = O(1) [2, 3]. The problem is to construct a control u~ that will minimize (1.18) on the trajectories 
of system (1.10). The solution is meaningful if the control system, while in motion, does not leave the 
region of oscillatory motion, that is, 0 ~< e. (t) < e,. This inequality is not included in the constraints of 
the problem, but must be verified when s~lving the problem. 

Equations of  the maximum principle. We replace problem (1.8), (1.18) by the simpler problem of 
minimizing the functional 



846 A.S.  Kovaleva 

T 
J(u) = M[e(T)] + IJ. 2 S m(e, u)dt (1.19) 

0 

on the trajectories of truncated system (1.16). The problem is to construct a control u. = arg min J(u)/  
u e U to minimize (1.19) on the trajectories of system (1.16). The relationship between the controls 
u~ and u. will be discussed in Section 5. 

We will assume that the optimal control problem (1.16), (1.19) has a solution for ~t e (0, ~ ]  and that 
the maximum principle is applicable to it [13]. The Hamiltonian of the problem is 

H~(e,y,O,p,q,[i,u, ix)=pj.l+ix2h+tlq~+[~[to+ixQI + IX2Q] (1.20) 

(the arguments on the right of (1.20) are omitted), where 

n = pB t +qB2, h = P ~ l  +q~2 - m  (1.21) 

and it follows from (1.17) that ( H )0 = 0. 
The required control u. is determined from the maximum condition for H~ [13] 

u. = argmax H~t (1.22) 
u~U 

as a function which is sufficiently smooth in all its arguments and is 2n-periodic in y and 0. It follows 
from (1.20) and (1.22) that 

u. = arg maxh(e,  cp(e,y),O,p,q,u) = U(e, tp(e,y),O,p,q) (1.23) 
u~U 

Putting h* = h(e, tp, O,p, q, u.) ,  we write the system of equations of the maximum principle for the 
phase and conjugate elements [13] as 

2 * e'=~J']p +ix hp 

P" = -IXHe - ix 2 h~ - ixq~e - I~Qle - IX 2~Qe 

2 * _ ~ p  
q ' = - i x n y - I x  h,. . . . .  _IxfSQ,,. _Ix2~Q,., V,. - --3y V~ (1.24 / 

[s' = - i x t - t o  - Ix 2 - Ix  fJQ2o 

y '  ---- IXf~'I'IIB2 "4"IX2¢I~2, 0 '  =(o+IXQI + IX2Q2 

with boundary conditions 

e(0) = e 0, y(0) = y0, 0(0) = 0 ° 

pCT) = -MtCeCT)), qCT) = O, ~(T) = 0 
(1.25) 

Here and below, the subscript will denote partial differentiation with respect to the indicated 
variable. 

2. C O N S T R U C T I O N  OF THE S O L U T I O N  OF A SYSTEM W I T H  A 
H I E R A R C H Y  OF P H A S E - R O T A T I O N  V E L O C I T I E S  

To solve system (1.24), (1.25), we will extend the procedure of hierarchic averaging [10] to the analysis 
of near-resonanee motions. Consider the vector z = (e,p,  q, 13) = {z/} (i = 1, 2, 3, 4) and rewrite (1.24) 
as 

z" = gZ(z,  y, O) + IX2S(z, y,O), y '  = laK2(e) + [tY(e, y,O) + Ix2C(e,y, O) 

0' = ~ + IXA(e, y) + Ix2~(e, y, 0) (2.1) 

with boundary conditions following from (1.25) 

F(z(0), z(T)) = 0 (2.2) 
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where Z and S are the vectors of the corresponding components of the first group of equations 
(1.24); we have used the notation Y -- Bz(e, qffe, y), 0), (y)0 = 0, A = Ql(e, q~(e, y)), etc., in the 
phase equations. It follows from the relation </4) ° = 0 that (Z) ° = 0. Additionally, it is assumed that 
the right-hand sides of (2.1) satisfy smoothness conditions that guarantee the validity of the hierarchic 
averaging procedure [5, 9, 10]. The solution z(t, Ix) will be sought as an expansion [10] 

Z=Zo(X)+lxZ,(x,y,O)+~2Z2(X,y,O)+~3... 

z' =lazj0o~+~2(Zox +zb.(C/+ Y)+Z2eO~)+~ 3 .... x = ~2t 
(2.3) 

The coefficients of the expansion must still be 2n-periodic functions o fy  and 0, which are uniformly 
bounded with respect to all the variables when z e [0, or], a = IX2T. For the coefficients to be uniquely 
defined, we also require that the condition (zi> °y = 0 must hold for all higher approximations, i I> 1. 
Then (z >0y = z0 + IX . . . .  In this problem, we will confine ourselves to determining the coefficients of 
zi of at most the second order. 

Substituting (2.3) into (2.1) and equating coefficients of like powers of IX, we obtain a system of 
equations for the successive determination of z0, z~ and z2 

zloco = Z(zo, y, 0) (2.4) 

For the coefficient of z 1 to be periodic in 0, the derivative z~0 should not contain components that 
are constant as functions of 0. Hence it follows that 

Z, ('~, y, O) = co -l ~ Z(zo (x), y, O)dO + ~1 (Zo (z), y) = ~., (Zo, Y, O) + ~1 (Zo, Y) (2.5) 

where the integration is performed with "frozen" values of z0, y and x. The function ~l(z0, y) may be 
regarded as a constant of integration, which is independent of 0. The conditions <za )0 = 0, < ~1 )Y = 0 
uniquely define the function z 1 and imply the validity of the condition <zi )Oy = O. 

Substituting (2.3) into (2.1) and equating the coeffÉcients of IX2, we obtain 

z0, = G(zo, y, O) - o~z2o 

G = S +  Z~zl -%y( f l+ Y)=C,+ g-I'Z~ly (2.6) 

where < G >0 = 0. Using the fact that < ~1 >Y = 0, we have 

g = (S)O + (Zz~ ' )o _ (~jyy)O = g(Zo, Y) (2.7) 

In turn 

g(Zo,Y) = g(zo,Y)+ Y(Zo), Y = (g)Y, (g); = 0 (2.8) 

For the functions ~1 and z2 to satisfy the periodicity conditions, we proceed as in (2.4) and set 

~ly = ~-lg(zo,Y), z20 = o~-IC,(zo,Y, O) (2.9) 

It then follows from (2.6)-(2.9) that 

zo~ = ~zo) (2.10) 

Equation (2.10), together with the boundary conditions F(zo(O), z0(cr)) = 0, determine the 
principal term of the expansion (2.3). Estimates of the accuracy of the solution will be discussed in 
Section 5. 

3. A S Y M P T O T I C  S O L U T I O N  OF T H E  S Y S T E M  OF E Q U A T I O N S  OF 
T H E  M A X I M U M  P R I N C I P L E  

We will use the procedure just described to solve system (1.24), (1.25). We begin by constructing the 
expansion for the component  z 4 = 13 = 130 + Ix13x + IX2132. From the equation for 13, we have 

z"  = - u  ° ,  s4---hg-130 °e (3.1) 
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The zero superscript indicates that the functions concerned are evaluated at z = Zo = (eo, Po, qo, ~o), 
Z i and S i are the values of the components  of the vectors Z and S at z = z0 and the zero superscript 
of these functions is omitted. 

Let us find the function 13o from Eq. (2.10). Construct the function ~/a defining the right-hand side of 
(2.10) and given by relations (2.7) and (2.8). Taking into account that 

we can write (2.7) in the form 

By (1.22) and (2.1), we have 

( s ' )  ° =-<h~)  ° - po(Q°o) ° -= o 

g(zo, y) = (Z~I)o  _ (~,.vyO)e 

Z I _  o Z 2 o Z s o Z 4 = _ / . / ~ o ,  yO - Hp, = - H  i ,  = - H y ,  = B~. -- Hq° 

It follows from (2.5) and (3.3) that 

0 0 
~'t = gt , ,  ,°1 = - K ~ ,  

where 

°, = - K o  ° - - - n  o 

K°(zo,Y,O) = ~ H°(zo,y,O)dO, (K°) ° = 0 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

d 3 _ 3 -  o o o o _Z~z ,_~ l , yo  o o =_H~eKp + o o n~p~, +n;x;, +I~+13 + n~,qK~ = -!1 + 14 (3.11) 

To calculate the second term in (3.9), we write g 3 = (S 3 + d3) 0, where, by (3.3), (3.4) and 
(3.9) 

(3.8) 

(3.9) 

(S3) ° = - (h° )  °, (S3) °y = _..y,--,'h°~, °y = 0 (3.10) 

0 0 0 

It follows from (2.9), (3.4) and (3.7) that ~1 = ~1 = - / - ~  and 

d ~ o / d ' c  = 0 ,  [3o(0 ) = 0 

giving J]o(X) = 0. 
We will construct the expansion z 3 = q = q0 + laql + ~tXq2 • For 130 = 0 we obtain 

83 = _ h  o _[~lAo, g3 = ($3)o +(Z~.  1 _~,yyO)O 

For ( J31 }o = 0, we have 

Hence 

(3.7) 

Substituting (3.3) and (3.4) into (3.2) 

g4 = (_Hock o + H~,K 0 + H~KvO .0 + --yHOl~%O-.q, =(-11+I2+13+14) 0 (3.6) 

and evaluating the average by integration by parts, we obtain 

1 2x Hi Hs, d0, (- l l  + 12) 0 = 0 (tl)o =(12)o =-2"-~ ! o o 

(the terms outside the integral vanish by virtue of the periodicity o f H  ° and K ° as functions of 0). From 
(3.5) and (3.6), we have 

= ~.-~-tHOKO~ 13+14 ~0" q y" 
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average (I~)° by integration by parts 

(11)0 = _ l  J_ ~" KOeHOdO 
2g o 

(_ i i+12)0  0 0 0 0 ~.~..¢I(OHO$O = (n',~H, + n.~K; ) = ~y , - -e - -p ,  

It follows from (3.11) and the last few transformations that 

<d,)° ~(Kono o o o = +x:.n;), (a3)°y =o 
dy 

and, by (3.9)-(3.12) 

~,3 = (g3):. = (a3)e:. + (s3)O:. = o 

It follows from (2.7) and (3.13) that 

dqo/~=73 =o, qo(O) = o 

that is, qo('C) = O. At the same time, q ~ 0, but ( q )oy = 0. 
Let us construct Eq. (2.10) for eo andpo. It follows from (2.7), (3.3) and (3.4) that 

~:i = (Si + a~)0 

S t--h~,,° S 2---h~.° o o +a,K; + n°o. °, 
d' -.- - vo ,: = ,o ,co _ l.iO:O _ _ ,o:, 

:-.o :_i.lO :_.o:. 

Noting that (/_/o )o = 0, ( K ° )o = 0, we obtain 

(Sa)Oy_ o (S2)oy_ o =(ho)oy -~p ,  - - ~ e ,  x°(eo, Po) 

Evaluating (d I' 2 )oy using the same transformations as in (3.12), we get 

o o o 0ey (d I )Oy = zo, (d2)oy = _zeo, zO(eo, Po) = (He Kt, + HyK; ) 

Put 

849 

and taking (3.5) into consideration, we 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

n°(eo, p.) =-°(e0, po)+ zO(e., p°) = ( :  + n o :  + H ° : )  :" (3.18) 

Then Eq. (2.10) may be written in the form 

deo/a-c = nO(eo,po), ~o(O) = eO 
(3.19) 

dpo I d'c = - n  °(eo, Po), Po (G) = - M  e [e o(ff)] 

To determine the precise form of the function TI °, we substitute (1.21) and (3.5) into (3.16)-(3.18) 
and set q = 0, 15 = 0. We thereby obtain 

n°(eo,Po)=(X(eo,Po,(P(e,y),O) °y 
(3.20) x=~°+si.nl° o+so~o~-,]. ~no/~o=Bo. (no>o=o 
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Averaging over ~p, we obtain 

i ! 2n 
"q°(eo,Po ) = } ~ d t p  S X(eo,Po,tP ,O)dO 

2nT(e 0) v (e 0,~0) 0 
(3.21) 

The solution of system (3.19) consistent with the equality q0 = 0 is given by the equation 

u o = argma~h(eo,{P,O, po,O,u) = U(eo,{P,O, po,O) = Uo(eo,ff~,O,p o) (3.22) 

where h and U are the functions occurring in condition (1.23). It follows from (1.21), (1.23) and (3.22) 
that the control u0 is independent of the fast phase 0 if the coefficient ~1 is independent of 0. 

4. E S T I M A T E  OF THE A C C U R A C Y  OF THE S O L U T I O N  

Let u ,  be the control and let J~(u,) be the minimum value of the functional defining the solution of 
the original problem (1.8), (1.18). Let u0 be the control (3.20). We will show that 

0<-  J . ( u o ) - J ~ ( u . )  < - cIt, It ~ O  (4.1) 

(the left-hand inequality is obvious). Throughout, c will denote constants independent of B. If condition 
(4.1) is satisfied, then u0 is the B-optimal control in relation to the original problem. 

We will make the following assumptions. 
1. The right-hand sides of (1.1) and (1.8) are sufficiently smooth and bounded with respect to all 

variables in the domain D for any admissible control u e U. 
2. A solution of each optimal control problem (1.8), (1.18) and (1.16), (1.19) exists and is 

unique. 
3. The right-hand sides of the system of equations of the maximum principle (1.24) satisfies conditions 

that guarantee the validity of the transformations of the hierarchic averaging method for the Cauchy 
problem, up to the second approximation [5, 9, 10]. 

4. The averaged boundary-value problem (3.19) has a unique solution. 
It follows from condition 1 [3, 6] that as ~t ~ 0, e,(t, ~t) asymptotically approaches e(t) over a time 

2 interval t - ~t- with accuracy O(~t) for any admissible control u e U. Hence it follows that the functionals 
J,(~t) are close together for any admissible control, in particular 

I J ,  (u,) - J(u,)  t~ clIx, I J ,  (u 0) - J(u 0) I~ < c2I x, Ix --~ 0 (4.2) 

It follows from (4.2) and from condition 2 [6] that the control u is quasi-optimal with respect to the 
initial system, that is 

0<~ J , ( u , ) - J } t ( u , )  <~ c3ix, Ix--', 0 (4.3) 

It follows from conditions 3 and 4 [3, 6] not only that the solutions e and e0 are close together, but 
also that the control u0 is quasi-optimal with respect to the truncated system (1.18) 

0 <~ J(u o ) -  J(u,)  <~ c4It, It ~ 0 (4.4) 

Using (4.2)-(4.4), we write 

0 ~ Jix(Uo) - Jla(ug) = [J,(u 0 ) - J(u0)] + [J(u 0) - J(u,)] + 

+ [J(u, ) - Jl~ (u,)] + [Jit (u,) - Jg (urt)] ~< (c I + c 2 + c 3 + c 4)It ~< cIt (4.5) 

which is identical with (4.1). 

Remarks. 1. We have here considered only control with a fixed instant of completion of the process. Using 
analogous reasoning, we can construct approximate solutions of time-optimal problems. Suppose that the purpose 
of the control is to drive the system from its initial state %(0) = e ° to an equilibrium position %(T) = 0 in the 
minimum time T = la-2e, in such a way as to minimize functional (1.18) (G = 0), subject to constraints on the 
control u ~ U. In that case a quasi-optimal control u0 is definedby (3.20), where eo(x) andp0(x) constitute a solution 
of system (3~19) satisfying the boundary conditions e0(0) -- e U, e0(e) = 0. An additional condition that must be 
satisfied is rl ° = 1, x = a (compare [3]). 
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2. It follows from Sections 2 and 3 that the problem of controlling near-resonance oscillations may be 
regarded as a special case of a more general problem, namely, control in systems with different phase rotation 
velocities. 

5. E X A M P L E  

Let us consider the problem of vibrationally maintaining the rotation of an unbalanced rotor [7]. The simplest 
model may be represented by a mathematical pendulum of mass m and length I whose pivot is moving vertically 
as given by the relation s(t) = acos cot. It is well known [7] that such a system admits of a stable state of uniform 
rotation at frequency co. Suppose the system is also subject to a rotational torque M(t),  IMI ~< M0, whose purpose 
is to drive the system from a rotational state with initial frequency co o to a synchronous state in the least possible 
time. 

Assuming that the amplitudes of the vibration of the base are small compared with the dimensions of the 
pendulum, we introduce a small parameter ~ = la 2 = a/21. We also assume that co -> k, where k = (g//)1/2 is an 
eigenfrequency of weak free oscillations of the pendulum and (k/co) 2 = rt3~,. Assuming that the system is weakly 
controllable, we set 

~t3u= M lml2to 2, lul <~ mo, I.t3mo = Molml2to 2 

Then the equation of motion may be written in the form 

0~'+ I.t 2 sin01 (I.t'~ + 2cos02) = l.t3u (5.1) 

where 01 is the angle between the pendulum and its lower equilibrium position, 02 = cot is the driving phase, and 
the prime denotes differentiation with respect to the dimensionless variable cot. 

Equation (5.1) may be reduced to standard form (1.1) 

x '  = -p,2 (,tt'y sin e I + 2sin01 eose 2 ) + I.t2u, x(0) = x 0 = 0 0 / o  

(5.2) 
e~=x,  0~=1, 0~(0)=0, 02(0)=0 

Considering the motion in a small neighbourhood of the frequency resonance x = 1, we construct the change 
of variables (1.7) 

0 1 - 0 2 =  ~, x-I=l . t~,  0 2 = 0  (5.3) 

and rewrite (5.2) in the form of (1.1) 

u ' = -la sintp- la[sin(tp + 20) +laTsin(tp + 0)l +lx2u, u(0)=u ° 

(p'=lxu, 0 ' =  I (5.4) 

13o(tp) =-sintp, V(~p) = I -costp, u 0 = bt-I(ta/o0 - 1) 

Introducing new variables e a n d y  as in (1.14) and (1.15), we obtain 

e" =-bt[sin((p+ 20) +laysin((p +0)]o +l.t2uu 

y'  ---- IJ-Q(e) + ~tS(e, y,0) + 11.2(I)2 (e,y, 0,U) (5.5) 

0'--1 

u (e,(p) = :t:[2(e- 1 + cos tp)] ~j 

B2 = Ye  sin(tp + 20) ,  • 2 = - ~ e  sin(tp + 0) 

The control u0 is defined by condition (3.20). By (1.21), (3.20) and (5.5), we have 

h 0 = pouu (eo,(p), u 0 = argmaxl,l~mo upov = m 0 sign(pov) (5.6) 

Employing arguments similar to those in [2, 3], we obtain signp0 = -1, that is, the control synthesis has the 
form 

u0 = - m 0  s ignu ,  M = - M  0 s i g n ( 0 ' -  I) (5 .7)  

corresponding to well-known solutions of problems involving the damping of pendulum-type systems [2, 3]. 
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